28,805 research outputs found

    Born-Oppenheimer study of two-component few-particle systems under one-dimensional confinement

    Get PDF
    The energy spectrum, atom-dimer scattering length, and atom-trimer scattering length for systems of three and four ultracold atoms with δ\delta-function interactions in one dimension are presented as a function of the relative mass ratio of the interacting atoms. The Born-Oppenheimer approach is used to treat three-body ("HHL") systems of one light and two heavy atoms, as well as four-body ("HHHL") systems of one light and three heavy atoms. Zero-range interactions of arbitrary strength are assumed between different atoms, but the heavy atoms are assumed to be noninteracting among themselves. Both fermionic and bosonic heavy atoms are considered.Comment: 22 pages, 6 figures. Includes both positive and negative parity cases for the four-body secto

    Few-Boson Processes in the Presence of an Attractive Impurity under One-Dimensional Confinement

    Get PDF
    We consider a few-boson system confined to one dimension with a single distinguishable particle of lesser mass. All particle interactions are modeled with δ\delta-functions, but due to the mass imbalance the problem is nonintegrable. Universal few-body binding energies, atom-dimer and atom-trimer scattering lengths are all calculated in terms of two parameters, namely the mass ratio: mL/mHm_{\text{L}}/m_{\text{H}}, and ratio gHH/gHLg_{\text{HH}}/g_{\text{HL}} of the δ\delta-function couplings. We specifically identify the values of these ratios for which the atom-dimer or atom-trimer scattering lengths vanish or diverge. We identify regions in this parameter space in which various few-body inelastic process become energetically allowed. In the Tonks-Girardeau limit (gHH→∞g_{\text{HH}}\rightarrow \infty), our results are relevant to experiments involving trapped fermions with an impurity atom

    Computational aerodynamics and artificial intelligence

    Get PDF
    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics

    Smoothing of sandpile surfaces after intermittent and continuous avalanches: three models in search of an experiment

    Full text link
    We present and analyse in this paper three models of coupled continuum equations all united by a common theme: the intuitive notion that sandpile surfaces are left smoother by the propagation of avalanches across them. Two of these concern smoothing at the `bare' interface, appropriate to intermittent avalanche flow, while one of them models smoothing at the effective surface defined by a cloud of flowing grains across the `bare' interface, which is appropriate to the regime where avalanches flow continuously across the sandpile.Comment: 17 pages and 26 figures. Submitted to Physical Review

    Glassy dynamics in granular compaction

    Full text link
    Two models are presented to study the influence of slow dynamics on granular compaction. It is found in both cases that high values of packing fraction are achieved only by the slow relaxation of cooperative structures. Ongoing work to study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter, proceedings of the Trieste workshop on 'Unifying concepts in glass physics
    • …
    corecore